资源类型

期刊论文 120

年份

2023 8

2022 11

2021 12

2020 6

2019 8

2018 4

2017 9

2016 4

2015 4

2014 6

2013 5

2012 7

2011 8

2010 2

2009 8

2008 3

2007 4

2006 2

2002 1

2000 1

展开 ︾

关键词

工程项目 2

试验研究 2

9 %~12 % Cr 钢 1

&prime 1

&gamma 1

CDMA 1

FRP筋 1

M23C6 碳化物 1

上下行解耦;用户接入;资源划分;异构蜂窝网络;联合博弈 1

中俄火星联合探测计划 1

中国和巴西 1

中国空间探测 1

二维波达角估计;信道冲击响应估计;信号检测;均匀矩形阵列;大规模天线 1

交通工程 1

交通规划 1

产学研联合 1

低角估计;甚高频雷达;复杂场景;多径效应;高度估计 1

公共卫生,应急指挥体系,应急体系演变,新型冠状病毒肺炎疫情,联防联控机制 1

功能仿生 1

展开 ︾

检索范围:

排序: 展示方式:

Connection of the prefabricated updeck of road tunnels by a short lap-spliced joint using ultra-high-performance

《结构与土木工程前沿(英文)》   页码 870-883 doi: 10.1007/s11709-023-0977-7

摘要: Prefabricated internal structures of road tunnels, consisting of precast elements and the connections between them, provide advantages in terms of quality control and manufacturing costs. However, the limited construction space in tunnels creates challenges for on-site assembly. To identify feasible connecting joints, flexural tests of precast straight beams connected by welding-spliced or lap-spliced reinforcements embedded in normal concrete or ultra-high-performance fiber-reinforced concrete (UHPFRC) are first performed and analyzed. With an improvement in the strength grade of the closure concrete for the lap-spliced joint, the failure of the beam transforms from a brittle splitting mode to a ductile flexural mode. The beam connected by UHPFRC100 with short lap-spliced reinforcements can achieve almost equivalent mechanical performance in terms of the bearing capacity, ductility, and stiffness as the beam connected by normal concrete with welding-spliced reinforcements. This favorable solution is then applied to the connection of neighboring updeck slabs resting on columns in a double-deck tunnel. The applicability is validated by flexural tests of T-shaped joints, which, fail in a ductile fashion dominated by the ultimate bearing capacity of the precast elements, similar to the corresponding straight beam. The utilization of UHPFRC significantly reduces the required lap-splice length of reinforcements owing to its strong bonding strength.

关键词: UHPFRC     prefabricated updeck     road tunnel     lap-spliced rebars     flexural tests    

Design and modeling of continuum robot based on virtual-center of motion mechanism

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0739-6

摘要: Continuum robot has attracted extensive attention since its emergence. It has multi-degree of freedom and high compliance, which give it significant advantages when traveling and operating in narrow spaces. The flexural virtual-center of motion (VCM) mechanism can be machined integrally, and this way eliminates the assembly between joints. Thus, it is well suited for use as a continuum robot joint. Therefore, a design method for continuum robots based on the VCM mechanism is proposed in this study. First, a novel VCM mechanism is formed using a double leaf-type isosceles-trapezoidal flexural pivot (D-LITFP), which is composed of a series of superimposed LITFPs, to enlarge its stroke. Then, the pseudo-rigid body (PRB) model of the leaf is extended to the VCM mechanism, and the stiffness and stroke of the D-LITFP are modeled. Second, the VCM mechanism is combined to form a flexural joint suitable for the continuum robot. Finally, experiments and simulations are used to validate the accuracy and validity of the PRB model by analyzing the performance (stiffness and stroke) of the VCM mechanism. Furthermore, the motion performance of the designed continuum robot is evaluated. Results show that the maximum stroke of the VCM mechanism is approximately 14.2°, the axial compressive strength is approximately 1915 N/mm, and the repeatable positioning accuracies of the continuum robot is approximately ±1.47° (bending angle) and ±2.46° (bending direction).

关键词: VCM mechanism     continuum robot     flexural joint     pseudo-rigid body model     cable-driven    

Uncertainty of concrete strength in shear and flexural behavior of beams using lattice modeling

《结构与土木工程前沿(英文)》 2023年 第17卷 第2期   页码 306-325 doi: 10.1007/s11709-022-0890-5

摘要: This paper numerically studied the effect of uncertainty and random distribution of concrete strength in beams failing in shear and flexure using lattice modeling, which is suitable for statistical analysis. The independent variables of this study included the level of strength reduction and the number of members with reduced strength. Three levels of material deficiency (i.e., 10%, 20%, 30%) were randomly introduced to 5%, 10%, 15%, and 20% of members. To provide a database and reliable results, 1000 analyses were carried out (a total of 24000 analyses) using the MATLAB software for each combination. Comparative studies were conducted for both shear- and flexure-deficit beams under four-point loading and results were compared using finite element software where relevant. Capability of lattice modeling was highlighted as an efficient tool to account for uncertainty in statistical studies. Results showed that the number of deficient members had a more significant effect on beam capacity compared to the level of strength deficiency. The scatter of random load-capacities was higher in flexure (range: 0.680–0.990) than that of shear (range: 0.795–0.996). Finally, nonlinear regression relationships were established with coefficient of correlation values (R2) above 0.90, which captured the overall load–deflection response and level of load reduction.

关键词: lattice modeling     shear failure     flexural failure     uncertainty     deficiency     numerical simulation    

Hybrid flexural components: Testing pre-stressed steel and GFRP bars together as reinforcement for flexural

Mohammed FARUQI, Oved I. MATA, Francisco AGUINIGA

《结构与土木工程前沿(英文)》 2018年 第12卷 第3期   页码 352-360 doi: 10.1007/s11709-017-0453-3

摘要:

Concrete members historically have used either pre-stressed steel or steel bars. In recent years there has been an increased interest in the use of fiber reinforced polymer (FRP) materials. However, the flexure behavior of a hybrid system reinforced by the combination of pre-stressed steel and glass fiber reinforced (GFRP) is still relatively unknown. The purpose of this work is to study this. Two slabs of 100 and 150-millimeter thickness, with a span of 2.1 m reinforced with both pre-stressing steel and GFRP were constructed and tested to failure using ACI 318-11 and ACI 440.1R-15. The concrete had strength of 31 MPa and the slabs were respectively reinforced with 5#4 bars and 3#5 bars. Each slab had 37.41 mm2 prestressing wire with a failure stress of 1722.5 MPa. The experimental flexural strength and deflection of slabs were compared with their respective sizes theoretical slabs. The theoretical slabs were either reinforced with pre-stressed steel or GFRP rebars, or a hybrid system. It was found that the hybrid system produces better results.

关键词: Partial pre-stressing     composite structures     GFRP bars    

Analysis of stiffness and flexural strength of a reinforced concrete beam using an invented reinforcement

Nazim Abdul NARIMAN, Martin HUSEK, Ilham Ibrahim MOHAMMAD, Kaywan Othman AHMED, Diyako DILSHAD, Ibrahim KHIDR

《结构与土木工程前沿(英文)》 2021年 第15卷 第2期   页码 378-389 doi: 10.1007/s11709-021-0706-z

摘要: In this study, we conducted experimental tests on two specimens of reinforced concrete beams using a three-point bending test to optimize the flexure and stiffness designs. The first specimen is a reinforced concrete beam with an ordinary reinforcement, and the second specimen has an invented reinforcement system that consists of an ordinary reinforcement in addition to three additional bracings using steel bars and steel plates. The results of the flexure test were collected and analyzed, and the flexural strength, the rate of damage during bending, and the stiffness were determined. Finite element modeling was applied for both specimens using the LS-DYNA program, and the simulation results of the flexure test for the same outputs were determined. The results of the experimental tests showed that the flexural strength of the invented reinforcement system was significantly enhanced by 15.5% compared to the ordinary system. Moreover, the flexural cracks decreased to a significant extent, manifesting extremely small and narrow cracks in the flexure spread along the bottom face of the concrete. In addition, the maximum deflection for the invented reinforced concrete beam decreased to 1/3 compared to that of an ordinary reinforced concrete beam. The results were verified through numerical simulations, which demonstrated excellent similarities between the flexural failure and the stiffness of the beam. The invented reinforcement system exhibited a high capability in boosting the flexure design and stiffness.

关键词: three-point flexure test     softening stage     flexural crack     flexural strain    

Analytical algorithms of compressive bending capacity of bolted circumferential joint in metro shield

《结构与土木工程前沿(英文)》   页码 901-914 doi: 10.1007/s11709-023-0915-8

摘要: The integrity and bearing capacity of segment joints in shield tunnels are associated closely with the mechanical properties of the joints. This study focuses on the mechanical characteristics and mechanism of a bolted circumferential joint during the entire bearing process. Simplified analytical algorithms for four stress stages are established to describe the bearing behaviors of the joint under a compressive bending load. A height adjustment coefficient, α, for the outer concrete compression zone is introduced into a simplified analytical model. Factors affecting α are determined, and the degree of influence of these factors is investigated via orthogonal numerical simulations. The numerical results show that α can be specified as approximately 0.2 for most metro shield tunnels in China. Subsequently, a case study is performed to verify the rationality of the simplified theoretical analysis for the segment joint via numerical simulations and experiments. Using the proposed simplified analytical algorithms, a parametric investigation is conducted to discuss the factors affecting the ultimate compressive bending capacity of the joint. The method for optimizing the joint flexural stiffness is clarified. The results of this study can provide a theoretical basis for optimizing the design and prediciting the damage of bolted segment joints in shield tunnels.

关键词: shield tunnel     segment joint     joint structural model     failure mechanism    

Effect of size on biaxial flexural strength for cement-based materials by using a triangular plate method

Hakan T TURKER

《结构与土木工程前沿(英文)》 2022年 第16卷 第8期   页码 1017-1028 doi: 10.1007/s11709-022-0871-8

摘要: The effect of size on the biaxial flexural strength (BFS) of Portland cement mortar was investigated by using the recently proposed triangular plate method (TPM). An experimental program was conceived to study the size effect by keeping a constant water-cement ratio of 0.485, cement-sand ratio of 1:2.75, and using unreinforced triangular mortar plates of five different thicknesses and seven different side lengths. The BFS of the produced specimens was tested, and variations of BFS depending on specimen thickness and side length were determined. The results indicated that increases in triangular plate specimen side length and specimen thickness led to a decrease in the BFS of Portland cement mortar. The effect of specimen length increase on BFS was more significant than on the effect of the specimen thickness. The variations in specimens’ thickness indicated a deterministic Type I size effect, while the variations in specimens’ length showed an energetic-statistical Type I size effect.

关键词: testing     apparatus & methods     plain concrete     tensile properties     biaxial flexural strength     triangular plate method    

An experimental study on the flexural behavior of heavily steel reinforced beams with high-strength concrete

Yasser SHARIFI, Ali Akbar MAGHSOUDI

《结构与土木工程前沿(英文)》 2014年 第8卷 第1期   页码 46-56 doi: 10.1007/s11709-014-0237-y

摘要: In recent years, an emerging technology termed high-strength concrete (HSC) has become popular in construction industry. Present study describes an experimental research on the behavior of high-strength concrete beams in ultimate and service state. Six simply supported beams were tested, by applying comprising two symmetric concentrated loads. Tests are reported in this study on the flexural behavior of high-strength reinforced concrete (HSRC) beams made with coarse and fine aggregate together with Microsilica. Test parameter considered includes effect of being compressive reinforcement. Based on the obtained results, the behavior of such members is more deeply reviewed. Also a comparison between theoretical and experimental results is reported here. The beams were made from concrete having compressive strength of 66.81–77.72 N/mm and percentage reinforcement ratio ( / ) in the range of 0.56% – 1.20%. The ultimate moment for the tested beams was found to be in a good agreement with that of the predicted ultimate moment based on ACI 318-11, ACI 363 and CSA-04 provisions. The predicted deflection based classical formulation based on code provisions for serviceability requirements is found to underestimate the maximum deflection of HSC reinforced beams at service load.

关键词: high-strength concrete (HSC) members     flexural behavior     reinforced concrete     experimental results     ultimate moment    

Effect of bond enhancement using carbon nanotubes on flexural behavior of RC beams strengthened with

《结构与土木工程前沿(英文)》 2022年 第16卷 第1期   页码 131-143 doi: 10.1007/s11709-021-0787-8

摘要: This paper studied the effect of incorporation of carbon nanotubes (CNTs) in carbon fiber reinforced polymer (CFRP) on strengthening of reinforced concrete (RC) beams. The RC beams were prepared, strengthened in flexure by externally bonded CFRP or CNTs-modified CFRP sheets, and tested under four-point loading. The experimental results showed the ability of the CNTs to delay the initiation of the cracks and to enhance the flexural capacity of the beams strengthened with CFRP. A nonlinear finite element (FE) model was built, validated, and used to study the effect of various parameters on the strengthening efficiency of CNTs-modified CFRP. The studied parameters included concrete strength, flexural reinforcement ratio, and CFRP sheet configuration. The numerical results showed that utilization of CNTs in CFRP production improved the flexural capacity of the strengthened beams for U-shape and underside-strip configurations. The enhancement was more pronounced in the case of U-shape than in the case of use of sheet strip covers on the underside of the beam. In case of using underside-strip, the longer or the wider the sheet, the higher was the flexural capacity of the beams. The flexural enhancement of RC beams by strengthening with CNTs-modified CFRP decreased with increasing the rebar diameter and was not affected by concrete strength.

关键词: RC beams     flexural     strengthening     CFRP     CNTs     finite element    

The ITZ microstructure, thickness, porosity and its relation with compressive and flexural strength of

《结构与土木工程前沿(英文)》 2022年 第16卷 第2期   页码 191-201 doi: 10.1007/s11709-021-0792-y

摘要: A new insight into the interfacial transition zone (ITZ) in cement mortar specimens (CMSs) that is influenced by cement fineness is reported. The importance of cement fineness in ITZ characterizations such as morphology and thickness is elucidated by backscattered electron images and by consequences to the compressive (Fc) and flexural strength (Ff), and porosity at various water/cement ratios. The findings indicate that by increasing the cement fineness the calcium silicate hydrate formation in the ITZ is favored and that this can refine the pore structures and create a denser and more homogeneous microstructure. By increasing cement fineness by about 25% of, the ITZ thickness of CMSs was reduced by about 30% and Fc was increased by 7%–52% and Ff by 19%–40%. These findings illustrate that the influence of ITZ features on the mechanical strength of CMSs is mostly related to the cement fineness and ITZ microstructure.

关键词: cement fineness     interfacial transition zone     compressive and flexural strength    

Finite element analysis on the seismic behavior of side joint of Prefabricated Cage System in prefabricated

Yunlin LIU, Shitao ZHU

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1095-1104 doi: 10.1007/s11709-019-0538-2

摘要: The Prefabricated Cage System (PCS) has the advantages of high bearing capacity and good ductility. Meanwhile, it is convenient for factory production and it is beneficial to the cost savings, construction period shortening. Side joint is the weak region of PCS concrete frame and has great influence on seismic behavior of the whole structure. Thus systematically study on the seismic behavior of PCS concrete side joint is necessary. This paper presents a finite element study on behavior of the side joint under seismic loading. In the finite element model, PCS concrete and the reinforced concrete (RC) is modeled by the solid element and fiber-beam element, respectively. The numerical results is compared with the experimental results and it is found that the results of model based on fiber-beam element is in better agreement with the experimental results than solid element model. In addition, the overall seismic behavior of the side joints in PCS concrete is better than that of the RC with the same strength.

关键词: PCS concrete side joint     numerical simulation     fiber-beam element joint model     solid element joint model     seismic behavior    

Enhanced empirical models for predicting the drift capacity of less ductile RC columns with flexural,

Mohammad Reza AZADI KAKAVAND, Reza ALLAHVIRDIZADEH

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1251-1270 doi: 10.1007/s11709-019-0554-2

摘要: Capacity of components subjected to earthquake actions is still a widely interesting research topic. Hence, developing precise tools for predicting drift capacities of reinforced concrete (RC) columns is of great interest. RC columns are not only frequently constructed, but also their composite behavior makes the capacity prediction a task faced with many uncertainties. In the current article, novel empirical approaches are presented for predicting flexural, shear and axial failure modes in RC columns. To this aim, an extensive experimental database was created by collecting outcomes of previously conducted experimental tests since 1964, which are available in the literature. It serves as the basis for deriving the equations for predicting the drift capacity of RC columns by different regression analyses (both linear with different orders and nonlinear). Furthermore, fragility curves are determined for comparing the obtained results with the experimental results and with previously proposed models, like the ones of ASCE/SEI 41-13. It is demonstrated that the proposed equations predict drift capacities, which are in better agreement with experimental results than those computed by previously published models. In addition, the reliability of the proposed equations is higher from a probabilistic point of view.

关键词: flexural-shear-axial failure     drift capacity     reinforced concrete columns     statistical analysis     fragility curves    

Experimental study on flexural behavior of ECC/RC composite beams with U-shaped ECC permanent formwork

Zhi QIAO, Zuanfeng PAN, Weichen XUE, Shaoping MENG

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1271-1287 doi: 10.1007/s11709-019-0556-0

摘要: To enhance the durability of a reinforced concrete structure, engineered cementitious composite (ECC), which exhibits high tensile ductility and good crack control ability, is considered a promising alternative to conventional concrete. However, broad application of ECC is hindered by its high cost. This paper presents a new means to address this issue by introducing a composite beam with a U-shaped ECC permanent formwork and infill concrete. The flexural performance of the ECC/RC composite beam has been investigated experimentally with eight specimens. According to the test results, the failure of a composite beam with a U-shaped ECC formwork is initiated by the crushing of compressive concrete rather than debonding, even if the surface between the ECC and the concrete is smooth as-finished. Under the same reinforcement configurations, ECC/RC composite beams exhibit increases in flexural performance in terms of ductility, load-carrying capacity, and damage tolerance compared with the counterpart ordinary RC beam. Furthermore, a theoretical model based on the strip method is proposed to predict the moment-curvature responses of ECC/RC composite beams, and a simplified method based on the equivalent rectangular stress distribution approach has also evolved. The theoretical results are found to be in good agreement with the test data.

关键词: engineered cementitious composite (ECC)     durability     ECC/RC composite beam     permanent formwork     flexural performance     theoretical method    

Experimental flexural behavior of SMA-FRP reinforced concrete beam

Adeel ZAFAR, Bassem ANDRAWES

《结构与土木工程前沿(英文)》 2013年 第7卷 第4期   页码 341-355 doi: 10.1007/s11709-013-0221-y

摘要: The most critical drawback in currently used steel reinforcement in reinforced concrete (RC) structures is susceptibility to accumulation of plastic deformation under excessive loads. Many concrete structures due to damaged (yielded) steel reinforcement have undergone costly repairs and replacements. This research presents a new type of shape memory alloy (SMA)-based composite reinforcement with ability to withstand high elongation while exhibiting pseudo-elastic behavior. In this study, small diameter SMA wires are embedded in thermoset resin matrix with or without additional glass fibers to develop composite reinforcement. Manufacturing technique of new proposed composite is validated using microscopy images. The proposed SMA-FRP composite square rebars are first fabricated and then embedded in small scale concrete T-beam. 3-point bending test is conducted on manufactured RC beam using a cyclic displacement controlled regime until failure. It is found that the SMA-FRP composite reinforcement is able to enhance the performance of concrete member by providing re-centering and crack closing capability.

关键词: re-centering     shape memory alloys     concrete     composite     fiber reinforced polymer     scanning electron microscopy    

Flexural-torsional buckling behavior of aluminum alloy beams

Xiaonong GUO,Zhe XIONG,Zuyan SHEN

《结构与土木工程前沿(英文)》 2015年 第9卷 第2期   页码 163-175 doi: 10.1007/s11709-014-0272-8

摘要: This paper presents an investigation on the flexural-torsional buckling behavior of aluminum alloy beams (AAB). First, based on the tests of 14 aluminum alloy beams under concentrated loads, the failure pattern, load-deformation curves, bearing capacity and flexural-torsional buckling factor are studied. It is found that all the beam specimens collapsed in the flexural-torsional buckling with excessive deformation pattern. Moreover, the span, loading location and slenderness ratio influence the flexural-torsional buckling capacity of beams significantly. Secondly, besides the experiments, a finite element method (FEM) analysis on the flexural-torsional buckling behavior of AAB is also conducted. The main parameters in the FEM analysis are initial imperfection, material property, cross-section and loading scheme. According to the analytical results, it is indicated that the FEM is reasonable to capture mechanical behavior of AAB. Finally, on the basis of the experimental and analytical results, theoretical formulae to estimate the flexural-torsional buckling capacity of AAB are proposed, which could improve the application of present codes for AAB.

关键词: flexural-torsional buckling     aluminum alloy beams (AAB)     finite element method (FEM)     theoretical formula    

标题 作者 时间 类型 操作

Connection of the prefabricated updeck of road tunnels by a short lap-spliced joint using ultra-high-performance

期刊论文

Design and modeling of continuum robot based on virtual-center of motion mechanism

期刊论文

Uncertainty of concrete strength in shear and flexural behavior of beams using lattice modeling

期刊论文

Hybrid flexural components: Testing pre-stressed steel and GFRP bars together as reinforcement for flexural

Mohammed FARUQI, Oved I. MATA, Francisco AGUINIGA

期刊论文

Analysis of stiffness and flexural strength of a reinforced concrete beam using an invented reinforcement

Nazim Abdul NARIMAN, Martin HUSEK, Ilham Ibrahim MOHAMMAD, Kaywan Othman AHMED, Diyako DILSHAD, Ibrahim KHIDR

期刊论文

Analytical algorithms of compressive bending capacity of bolted circumferential joint in metro shield

期刊论文

Effect of size on biaxial flexural strength for cement-based materials by using a triangular plate method

Hakan T TURKER

期刊论文

An experimental study on the flexural behavior of heavily steel reinforced beams with high-strength concrete

Yasser SHARIFI, Ali Akbar MAGHSOUDI

期刊论文

Effect of bond enhancement using carbon nanotubes on flexural behavior of RC beams strengthened with

期刊论文

The ITZ microstructure, thickness, porosity and its relation with compressive and flexural strength of

期刊论文

Finite element analysis on the seismic behavior of side joint of Prefabricated Cage System in prefabricated

Yunlin LIU, Shitao ZHU

期刊论文

Enhanced empirical models for predicting the drift capacity of less ductile RC columns with flexural,

Mohammad Reza AZADI KAKAVAND, Reza ALLAHVIRDIZADEH

期刊论文

Experimental study on flexural behavior of ECC/RC composite beams with U-shaped ECC permanent formwork

Zhi QIAO, Zuanfeng PAN, Weichen XUE, Shaoping MENG

期刊论文

Experimental flexural behavior of SMA-FRP reinforced concrete beam

Adeel ZAFAR, Bassem ANDRAWES

期刊论文

Flexural-torsional buckling behavior of aluminum alloy beams

Xiaonong GUO,Zhe XIONG,Zuyan SHEN

期刊论文